Mолниезащита ВЛ 6-10 кВ PDF Печать E-mail
Статьи - Электромонтажные работы

Воздушные линии электропередачи (ВЛ) – сооружение, состоящее из проводов, вспомогательных устройств, и предназначенное для передачи или распределения электрической энергии. Благодаря своей протяженности на сотни и тысячи километров ВЛ являются потенциальной «мишенью» для прямого удара молнии и ее вторичных проявлений. За грозовой сезон каждые 30 км линий электропередачи принимают на себя один удар молнии, что является немаловажным фактором при планировании ее защиты от грозовых проявлений. При каждом воздействии молнии на энергетическое оборудование происходит выработка ресурса и значительное старение оборудования. Экономиечские потери от такого опосредованного воздействия молнии на энергосистемы значительно превосходят стоимость молниезащиты.

Аварийные отключения ВЛ 6, 10 кв по причине грозовых перенапряжений составляют до 40 % от общего числа их отключений. Это значит, что требуется эффективная молниезащита.

Существующий опыт применения разрядников (вентильных, трубчатых) и ОПН для защиты ВЛ от грозовых перенапряжений, а также теоретические исследования показывают, что такая молниезащита с точки зрения своих технических возможностей не может в полной мере удовлетворить предъявляемые к ней требования в соответствии с условиями работы на воздушной линии при воздействии грозовых разрядов. Так даже самые совершенные из успешно применяемых для грозозащиты подстанционного оборудования ОПН не способны без разрушения выдерживать те реально возможные токи разряда молнии, которые будут протекать через них в случае установки на ВЛ. Искровые воздушные промежутки приводят только к увеличению числа отключений ВЛ, поскольку молниезащита не способна гасить сопровождающую грозовое перекрытие дугу. Единственным средством, которое хотя и не выступает как защита от перенапряжений непосредственно от грозовых воздействий, но сокращает степень их последствий, служит автоматическое повторное включение (АПВ), эффективность которого для распределительных сетей составляет не более 50 %. Поскольку такая защита от перенапряжений, к тому же, негативным образом отражается на коммутирующем и другом высоковольтном оборудовании, АПВ применяется далеко не везде.

При использовании в качестве защиты от грозовых перенапряжений дугозащитных «рогов», в процессе дугоотвода происходит их интенсивное обгорание, требующее их периодической замены. Но кроме заведомо очевидных недостатков, имеется одно техническое обстоятельство, которое ставит под сомнение работоспособность данной молниезащиты даже в изначально задуманном виде. Дуговые замыкания могут сопровождаться токами различной величины, а возможность выхода дуги на «рога», в силу электродинамических закономерностей и конструктивных параметров системы, появляется лишь при токах, превосходящих 1-2 кА. Соответственно, при меньших токах, дуга не выходит на «рога», и это влечет опасность пережога провода. Такая аварийная возможность появляется, например, даже при КЗ, вызванном одновременным перекрытием изоляторов нескольких фаз на одной опоре при прямом ударе молнии в линию, на удалении нескольких километров от питающей подстанции. При индуктированных перенапряжениях возникновение КЗ вообще маловероятно, так как в этом случае значительно чаще происходят перекрытия разноименных фаз не на одной, а на разных опорах. Это означает, что при индуктированных перенапряжениях токи дуговых замыканий, практически, всегда будут ограничиваться сопротивлениями заземления опор и не будут превышать 500 А, а при таких токах дуга заведомо не способна выйти на «рога», и система не обеспечивает защиту проводов от пережога.

В связи с принятием новых нормативов, ориентированных на применение на ВЛ 6, 10 кВ защищенных самонесущих проводов технические требования к грозозащите, которой должны обладать линии электропередач (ЛЭП), должны учитывать обязательное применение грозозащитных средств на ВЛЗ, проходящих по открытой и высокой местности независимо от числа грозовых часов в году, а также в других зонах с числом грозовых часов в году свыше 40. На ВЛЗ 6-10 кВ, проходящих по населенной местности и зоне с грозовой деятельностью в среднем 20 грозовых часов и более, необходимо предусматривать установку для защиты от грозовых перенапряжений длинно-искровых разрядников (РДИ). Эти требования практически означают, что на большинстве участков ВЛЗ должна быть указанная грозозащита.

РДИ являются российской разработкой НПО «Стример» и по своим конструктивным параметрам, техническим характеристикам и функциональным возможностям представляют особый класс устройств грозозащиты, не имеющий мировых аналогов. Принцип действия всех видов молниезащиты РДИ заключается в ограничении грозовых перенапряжений на ВЛ за счет искрового перекрытия по поверхности изоляционного тела разрядника с длиной канала разряда, в несколько раз превосходящей строительную высоту защищаемой изоляции, и гашении сопровождающих токов промышленной частоты за счет обеспеченного таким образом снижения величины среднего градиента рабочего напряжения вдоль канала грозового перекрытия.

Принципы молниезащиты электрических сетей 6-10 кВ с помощью длинно-искровых разрядников

Главным отличительным достоинством класса длинно-искровых разрядников является их неподверженность разрушениям и повреждениям грозовыми и дуговыми токами, поскольку они протекают вне аппаратов, по воздуху вдоль их поверхности. Это уникальное для грозозащитных аппаратов качество наряду с конструктивной простотой предопределило возможность их успешного применения в качестве эффективного и надежного средства защиты воздушных линий и электрических сетей от грозовых перенапряжений и их последствий взамен используемых ограничителей перенапряжений нелинейных (ОПН) и дугозащитных искровых промежутков («рогов»).

Применение существующих видов длинно-искровых разрядников позволяет решать задачу комплексной защиты электрических сетей от грозовых перенапряжений и их последствий.

Установка разрядников на всем протяжении воздушных линий (ВЛ) и на подходах к подстанциям и кабельным вставкам позволяет исключить перекрытия изоляции на ВЛ и все негативные сопровождающие последствия как при индуктированных грозовых перенапряжениях, так и при прямом ударе молнии (ПУМ). При этом обеспечивается отсутствие грозовых отключений ВЛ, разрушений изоляторов, пережога проводов, экономия ресурсов и защита подстанционного оборудования.

Технология грозозащиты длинно-искровыми разрядниками применима для ВЛ с любыми видами опор - железобетонными, металлическими, деревянными , изоляторов - штыревыми, натяжными, подвесными, фарфоровыми, стеклянными, полимерными, и проводов, как защищенными, так и неизолированными.

В зависимости от установленных технических требований по грозозащите участков электрических сетей возможно применение на них различных видов разрядников и их сочетаний.

Защита ВЛ 6-10 на железобетонных и металлических опорах от индуктированных перенапряжений

Для надежной защиты от индуктированных грозовых воздействий необходимо устанавливать на каждую одноцепную опору защищаемого участка ВЛ по одному разряднику. В зависимости от типа опор, траверс, изоляторов ВЛ и других определяющих обстоятельств применяются разрядники трех типов: РДИП-10-IV-УХЛ1, РДИШ-10-IV-УХЛ1, РДИМ-10-К-II-УХЛ1.

Разрядники петлевые РДИП-10-IV-УХЛ1 можно устанавливать на любые виды опор, с чередованием фаз.

Разрядники шлейфовые РДИШ-10-IV-УХЛ1 целесообразно использовать в местах двойного крепления провода, вместо петлевых.

Разрядники модульные РДИМ-10-К-II-УХЛ1 предназначены для защиты ВЛ только с компактным размещением проводов, расстояние между которыми не превышает 50 см, и с изоляторами ШФ-20 в районах с не более, чем второй степенью загрязнённости атмосферы. Эти разрядники устанавливаются только на среднюю фазу.

На двухцепных ВЛ разрядники должны устанавливаться на обе цепи таким образом, чтобы на каждой из опор защищалась только одна пара одноименных фаз, с тем же принципом чередования, что и для одноцепных ВЛ. Нарушение этого требования создает возможность короткого междуфазного замыкания и отключения линии при индуктированном грозовом перенапряжении.

При схеме установки разрядников с последовательным чередованием фаз токи промышленной частоты, сопровождающие многофазные замыкания, обусловленные грозовыми перенапряжениями, протекают по контурам, включающим в себя сопротивления заземления опор. Принцип действия РДИ основан на предотвращении перехода искрового перекрытия в силовую дугу промышленной частоты. При этом эффективность гашения сопровождающих токов тем выше, чем меньше они по величине, а наличие сопротивлений заземления опор в контуре замыкания благоприятным образом влияет на снижение величины сопровождающих токов.

Поэтому с точки зрения грозозащиты от индуктированных перенапряжений установка РДИ на опору ВЛ не налагает никаких специальных требований к заземлению опоры, связанных со снижением его величины.

Существующие нормы ПУЭ по заземлению опор на ВЛ, установленные в п. 2.5.129 должны применяться с учетом вышеизложенной специфики работы РДИ, которая не позволяет отнести длинно-искровые разрядники к "другим устройствам молниезащиты" по п. 2.5.129-1), таким, как например, трубчатые разрядники, для которых требование по снижению сопротивления заземления является необходимым исходя из такой их технической характеристики, как нижняя граница тока гашения.

Длинно-искровые разрядники в соответствии со своими конструктивными параметрами, техническими характеристиками и принципу действия не относятся к устройствам, установка которых на ВЛ приводит к дополнительному риску возникновения аварийных режимов, требующему принятия специальных мер технической безопасности. Более того, наличие РДИ на ВЛ должно устранить все случаи однофазных замыканий, вызванных грозовыми перенапряжениями.

Смысл установленных норм ПУЭ по сопротивлениям заземления сводится к ограничению числа грозовых отключений. Поэтому даже нынешняя редакция п.2.5.129 ПУЭ допускает возможность превышения сопротивлений заземления части опор по сравнению с нормируемыми значениями, если удовлетворяется главное требование по ожидаемому числу грозовых отключений. Установка РДИП как раз и обеспечивает снижение числа грозовых отключений, при этом для данной системы грозозащиты увеличение сопротивлений заземления принципиально может лишь повысить ее эффективность.

В связи с этим для опор ВЛ, оснащенных длинно-искровыми разрядниками, следует применять те же нормы по сопротивлению заземления, что и для опор без устройств молниезащиты.

Защита ВЛ 6-10 кВ на железобетонных и металлических опорах от прямых ударов молнии

При необходимости обеспечения гарантированной защиты от любых грозовых воздействий, в том числе, от прямого удара молнии в ВЛ, необходимо устанавливать на каждую опору защищаемого участка ВЛ по три разрядника модульного типа РДИМ-10-1,5-IV-УХЛ1, на все фазы. При этом необходимо обеспечить низкое (желательно не более 10 Ом) сопротивление заземления лишь на ближайших нескольких опорах подхода ВЛ к подстанции. Остальные опоры по условиям грозозащиты специально заземлять не требуется.

В случае, если технико-экономический анализ показывает целесообразность защиты от прямых ударов молнии не всей линии, а лишь отдельных участков, их целесообразно защищать следующим образом. На всех опорах защищаемого участка следует установить по три разрядника модульного типа РДИМ-10-1,5-IV-УХЛ1, на все фазы. Две опоры, являющимися крайними с двух сторон защищаемого от прямых ударов молнии участка ВЛ, необходимо заземлять, обеспечивая, по возможности, величину их сопротивления заземления не более 10 Ом. Если это требование по объективным причинам не выполнимо, следует компенсировать это дополнительным заземлением еще одной, или нескольких соседних опор на каждой из сторон участка. Остальные опоры данного участка ВЛ специально заземлять не надо.

Защита ВЛ 6-10 кВ на деревянных опорах от индуктированных перенапряжений

В сухом и чистом состоянии деревянные опоры являются изоляторами. И если бы они не подвергались воздействию влаги и грязи, защищать линию от индуктированных перенапряжений не требовалось бы, так как при наибольшей практически возможной величине индуктированного перенапряжения 300 кВ перекрытия изолятора и опоры не происходило бы. Однако при загрязнении и увлажнении опор, что обычно происходит на практике, опоры становятся проводящими, хотя и с довольно большим сопротивлением (порядка десятков и сотен кОм). Как показали проведённые в лаборатории испытания, в этом случае при воздействии импульсов грозовых индуктированных перенапряжений на все три фазы возможно одновременное перекрытие на одной опоре двух изоляторов. При этом на линии возникает междуфазное короткое замыкание со всеми неприятными последствиями: отключением потребителей, возможным пережогом проводов, дугой сопровождающего тока, большим электродинамическим ударом по оборудованию подстанции. Поэтому ВЛ на деревянных опорах целесообразно защищать от индуктированных перенапряжений таким же образом, как и ВЛ на проводящих опорах.

Заземлять опоры не требуется. При срабатывании разрядника, установленного на опоре на одной из фаз, исключается перекрытие изоляторов всех трёх фаз, так как разность потенциалов между проводами и траверсой резко уменьшается. Поскольку сопротивление опоры весьма высокое, при срабатывании одного разрядника на опоре происходит лишь незначительное ограничение перенапряжения, т. е. на всех трёх фазах сохраняется перенапряжение. Это перенапряжение распространяется по линии, поэтому, в соответствии с требованием ПУЭ, обязательно необходимо на расстоянии примерно 200 метров от подстанции устанавливать комплект разрядников РДИМ-10-1,5-IV-УХЛ1 и опору заземлять. При срабатывании этих разрядников волны перенапряжения, приходящие на подстанцию, существенно снижаются. Окончательно перенапряжение, поступающее на оборудование подстанции, ограничивается при помощи ОПН.

Защита ВЛ 6-10кВ на деревянных опорах от прямых ударов молнии

Возможно два варианта защиты от прямых ударов молнии:

  • защита опор от расщепления, но не от грозовых отключений ВЛ;
  • защита опор от расщепления и ВЛ от отключений вследствие грозовых перенапряжений.

Для исключения расщепления опор грозовыми разрядами целесообразно проложить вдоль стоек опор заземляющие спуски и выполнить простое заземление, например в виде одиночного вертикального заземлителя, не стремясь обеспечить низкое значение сопротивления заземления.

Защита ВЛ от грозовых отключений при прямом ударе молнии осуществляется так же, как для ВЛ с железобетонными и металлическими опорами.

Защита подходов 6-10 кВ к подстанциям и кабельным вставкам

Непосредственно защита оборудования подстанций и кабельных вставок осуществляется ОПН или вентильными разрядниками (РВ), установленными вблизи от них. На линиях с деревянными опорами или с проводящими опорами с изоляторами типа ШФ20 (или аналогичными им, имеющими импульсное разрядное напряжение порядка 150-160 кВ) должны быть приняты меры по ограничению приходящих на подстанцию волн перенапряжений. Для защиты подхода к подстанции от набегающих волн грозовых перенапряжений следует устанавливать комплект из трех разрядников РДИМ-10-1,5-IV-УХЛ1 на три опоры примерно за 200 м от подстанции или кабельной вставки. Данные опоры необходимо заземлять в соответствии с установленными нормативными требованиями.

На остальных опорах до подстанции или кабельной вставки также следует устанавливать разрядники. Для обеспечения защиты от прямого удара молнии необходимо устанавливать по три разрядника РДИМ-10-1,5-IV-УХЛ1 на каждую опору, для защиты только от индуктированных перенапряжений достаточна установка по одному разряднику РДИП-10-IV-УХЛ1 на опору с чередованием фаз. При этом необходимо обеспечить низкое (желательно не более 10 Ом) сопротивление заземления на всех опорах подхода ВЛ к подстанции. Если кабельная вставка подходит к линии на промежуточной опоре, то указанные выше мероприятия надо выполнить на линии с обеих сторон от этой опоры.

Сравнительные характеристики длинно-искровых разрядников

РДИП-10-IV-УХЛ1

РДИМ-10-1,5-IV-УХЛ1

РДИМ-10-К-II-УХЛ1

РДИШ-10- IV-УХЛ1

Класс напряжения

10 кВ

10 кВ

10 кВ

10 кВ

Длина перекрытия по поверхности

78 см

150 см

27 см

80 см

Внешний искровой промежуток

2-4 см

Нет

Нет

2-4 см

Импульсное 50 %-ное разрядное напряжение, не более

на положительной полярности

на отрицательной полярности

110 кВ

90 кВ

100 кВ

90 кВ

140 кВ

110 кВ

90 кВ

Напряжение координации с изолятором ШФ10-Г

300 кВ

300 кВ

300 кВ

300 кВ

Многократно выдерживаемое внутренней изоляцией

импульсное напряжение, не менее

50 импульсов

300 кВ

50 импульсов

300 кВ

50 импульсов

300 кВ

50 импульсов

300 кВ

Выдерживаемое напряжение промышленной частоты, не менее

в сухом состоянии

под дождём

42 кВ

28 кВ

42 кВ

28 кВ

42 кВ

28 кВ

42 кВ

28 кВ

Многократно выдерживаемый

импульсный ток 8¤20 мкс, не менее

20 импульсов

40 кА

20 импульсов

40 кА

20 импульсов

40 кА

20 импульсов

40 кА

Масса

2,3 кг

1,6 кг

0,15 кг

2,3 кг

 

 

 

Наша лицензия

© 2008 - 2017 ООО "Малахит" Все права защищены

RocketTheme Joomla Templates
Яндекс.Метрика Promportal.Ru :: рейтинг промышленных сайтов электромонтажные работы, электроснабжение, освещение, электромонтаж, электрика, электропроводка, электромонтажные услуги Seo анализ сайта